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ABSTRACT 

In many models based on reduction from greater than four 

dimensions, there are absolutely stable particles wlth 

masses of order R 
-1 . (R Is the compactlflcatlon 

scale. 1 If the temperature of the unlverse were ever 

close to R 
-1 

, these massive states would have been 

present and some would have survived annlhllatlon. We 

calculate the present mass density due to these 

particles and find both the 5-dimensional model and some 

versions of N=8 supergravity to be unacceptable. We 

discuss some possible solutions to this problem. 
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One of the most attractive approaches for unlfylng gauge 

theories with gravlta tlon Is based on enlarging the dimensional 

space-tlme. Thls program Is traced back to the work of Kaluza 

ity of 

Cl1 

and Klein [Z], who proposed that gravltatlon and electrodynamics In 4 

dimensions might be unified as a pure gravltatlonal theory In 5 

dlmenslons. The vacuum geometry determines the effective low-energy 

theory; 5-dlmenslonal gravity reduces to 4-dlmenslonal gravity and a 

peculiar verslon of electrodynamics If the vacuum Is the space M4 X 

S’. (M4 is 4-dlmensional Mlnkowskl space and S’ is the 

l-sphere or circle.) 

Recent work has centered on constructing hlgher-dlmenslonal 

theories that Include non-abellan gauge lnteractlons [3]. For 

example, It Is possible to formulate N=8 supergravity as a 

Kaluza-Klein theory In 11 dimensions [4]. Another example Is the 

quantum superstring, which must be formulated In 10 dlmenslons [5]. 

Although there has not yet emerged a low-energy theory wlth the 

observed gauge and fermlonic structure of the standard 

electroweak-QCD model, the attract1 

generated much Interest. 

Typlcally, the vacuum geometr 

of M4 with a compact space that has 

Then each fle 

4-dimensional 

dimensions. 

Id has a 

fields t 

The zero 

harmonic expansion about the vacuum Into 

lmes the mass elgenfunctlons of the extra 

modes correspond to the low-mass particle 

lnflnlte 

Is usual I 

1O-33 cm 

spectrum; the 

order R 
-1 

. It 

-1 
mPl 

= 1.62 x 

eness of these approaches has 

of Interest Is a direct product 

a hlgh degree of symmetry. 

sequences of higher modes have masses of 

y assumed that R Is of order GN 112 = 

times some power of the gauge coupling 



(GN 
Is Newton’s constant), although there are models where R Is 

determined by the electroweak breaking scale GF “’ = 6.74 x 

10-l’ cm (G F Is Fermlrs constant) [6]. 

We discuss a poss ible cosmological consequence resulting from 

the “4-dimensional part lcles corresponding to the non-zero modes of 

the harmonic expansions in mass elgenstates of the higher-dlmenslonal 

fields,” generically called wpyrgonsw [7]. If the universe were ever 

at a temperature comparable to R -1 , the pyrgons would have been 

present. In the 5-dlmenslonal theory 

symmetry, the pyrgons cannot decay so 

they can annihilate with antipyrgons. 

survive annihilation contribute to th 

with an unbroken local U1 

ely Into zero modes, although 

The stable pyrgons that 

present energy density of the 
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unlverse. We calculate the present number density of the pyrgons, 

and then require their contrlbutlon be less than the observed bounds. 

If annihilation were negllglble. then today the number density 

of pyrgons would be comparable to the photon number density, which Is 

acceptable only if the pyrgon mass satlsfles 
“ly 

6 100 eV. just as 

for neutrlno masses [S]. Thus, the pyrgons must be annihilated; we 

require that the annihilation rate (G = nprAlvl, where nlu is 

the pyrgon number density and PA Is the annlhllatlon cross section) 

must be comparable to the expanslon rate of the universe (rE = 

2 
T Imp,, where T Is the temperature). If we assume ~Alvl=~2/m~2, 

then at T = m 
9 

and n p = T3, we estimate PA/P, = 2 mpl/mp In 

the 5-dlmensional Kaluza-Klein model, Q!= Rp12/R2 = m,+,2/mp12, 

and fA/fE = mr+3/mp13. For rn,+ < mpl, the ratlo Is less than 

unity, and annihilation Is Ineffective at ridding the unlverse of 

stab I e pyrgons. However, If we modify the theory so the pyrgons 



- 4 - 

carry a slmllar but larger charge such that o( appearing In CA Is 

order unity for any m+ then rA/rE N mpl/m,+. If my << mpl, 

annlhllatlon can be effective enough to reduce the pyrgon density 

below present observational bounds. For this to occur we will show 

m,+.$ lo6 GeV. 

The presence of absolutely stable pyrgons may appear to be a 

special feature of the 5-dimenslonal model, resultfng from the fact 

that the zero modes do not carry the lJ, charge. However, there are 

somewhat more realistic theories with stable pyrgons In which the 

zero modes do carry the gauge quantum numbers: for example, 

11-dlmenslonal supergravity with vacuum M4 x S’ has stable 

pyrgons even though most of the 256 zero modes do carry the SO6 

quantum numbers of the symmetry of S’, as we show later. 

We now turn to the details of the 5-dlmenslonal model, where 

the vacuum Is M4 X S’, and the harmonic expanslon Is Just a 

Fourier series In the extra coordinate (y = %Re) with coefflclents 

that are fields on M4. (Generallzatlons will be lndlcated as we go 

along. 1 Thus, the fields are expanded as 

@ l(x#Y) = 2 $1 * eike k(x) (1) 
k=-o, 

where I is a space-tlme Index and Ikl labels the mass elgenstate. 

(For a compact manlfold wlth symmetry group G, the elk0 are 

replaced by representation matrices of G, Dk(L 
Y 

-‘), where L 
Y 

Is the element of G that parameterlzes the point y of the manifold. 

The sum on k is replaced by a sum or restricted sum over the 

representations of G.) 
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The equation of motlon for small disturbances about the ground 

state geometry is given by [9] 

*‘5)pl(x,y) = 0 , (2) 

where Lf5’ Is the 5-dimensional drAlembertlan. In the free field 

limit, each field (x) satlsfles a wave equation, 

( Dc4’ t Mk *I cjlk(X) = 0 (3) 

where, in thls case, the mass squared operator is just the 

drAlembertlan In the extra dimension. Therefore, each term in the 

harmonic expansion (1) corresponds to a particle with mass Mk2 = 

(k/ZfZR)‘. The generator of the charge Is just lay, so the charge 

of 
6” 

(x) Is proportional to k. The mass spectrum In four 

dimensions [9] contains a massless, neutral spln-2 particle; a 

massless, neutral spin-l partlcle; a massless neutral scalar; and an 

Infinite tower of charged spln-2 pyrgons with masses Mk2 = 

(k/2YR)‘, k = 1, 2, . . . . 

Consider the decay of the pyrgons. We label each 4-dlmenslonal 

field In the harmonic expanslon by the quantum number k. The 

amplitude for the process, 

fik * $A”’ t p t . . . t tjkn , (4) 

Is ‘contained In a term of the 5-dimensional effective actlon of the 

form, 



1 - 2ER d4x 
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r 
de e 

I(-k+k,t...tk,)e 

+” (x)* ’ 

. . . pkncx, , (5) 

where the contraction on space-t lme I ndlces is lmpllclt in the 

notat Ion. Upon Integration over the extra dlmenslon, t 

for (4) Is proportional to the Kronecker 8, %k,+k2f.. 

The appearance of derivative couplings In the action s t 

the same s-function, since the derlvatlve does not mix 

he decay rate 

+k ,-k). 

III leads to 

modes. The 

existence of the S-function means that no pyrgon (Ikl>l) can decay to 

zero modes (k=O) only. [For spaces with higher symmetry, the 

generalization of the Kronecker g Is a (3n-3)-symbol, which is 

nonzero only if it sa 

course, the annlhllat 

all zero modes. 

tlsfles certain wtriangle inequal 

Ion of a pyrgon with Its antipart 

ties.*@] Of 

cle can yield 

We now calculate the number denslty np of remnant pyrgons from 

the big bang. There Is no need to follow the evolution of the 

universe up to the time of compactlflcatlon tc If the Inltl a 

conditions for n P can be set at a time near t 
C’ 

At tc the 

universe has become approximately 4-dimensional and the exe 

of the vacuum geometry may be relnterpreted as 4-dlmensiona 

I 

tatlons 

zero 

modes and pyrgons. If the 4-dimensional temperature T at tc Is 

near enough to Tc f R-l, then the calculation of n+ Is 

Insensitive to the Initial conditions. as will be seen. Otherwlse, 

the calculation places a m Ilmit on nP. 

Unless very specfal Initial condltlons control the evolution of 

the universe for t < tc, there will be pyrgons at tc, and the 
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since, 

I condlt I’ 

typlcal I 
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on for the ratio, r = ny/n,. will be of order unity, 

y, the excitations of the 5-dimensional fields will be 

distributed over the modes In (1). Moreover, If the excited pyrgons 

(lk( > 1) decay rapidly enough Into stable /kl = 1 pyrgons and zero 

modes, they will be present In a thermal distribution. The stable 

pyrgons decrease in number only by annihilation. For slmpliclty we 

Ignore the Ikl > 1 populations and compute n,+, for the stable ones, 

assuming nv for k = tl and k = -1 are equal. Then nV satlsfles the 

equat Ion, 

. 
“l/, = [(ny eq)2 - ng’l U-AIvl - rE 

where the equ 

T. As Is typ 

pyrgon-ant I py 

is determined by rn+ and lllbrlum number denslty nqeq 

lcal In gauge theories, for T 

rgon annihilation crossectlon 

crAIVl “’ (c(‘/mq’) Iv I c=i q2R2/d= 

“? ’ (6) 

< m 
9 

the scale of the 

-2 
Is set by rnq : 

where rnq N- R-’ . The 4-dlmensional 

c Is (pp f pY)“2/mpl, where ,0,u Is 

mvT 
for T < rnt) and JZJY Is the radl 

. (7) 

expansion rate of the unlverse 

the p energy density (f$~= 

atlon energy density Cfi-T4). 

We calculate the ratio r from n+, In (6) and the photon number 

denslty nil = T3 [IO]. 

It is typical of all Kaluza-Klein theories, Including the 

5-d 

ol 

mens lonal case, that the charge carried by the pyrgons Is 

RPl 2/R2, so cT~IvI = RP14/R2fi. Because of the 

I annihilation cross section, the final value of r = np/nf will 



Cll]; @Is set to unlty and the calculation Is done for varlous 

values of R with the lnltlal condition, r = 1. In the very special 

case that r = 0 at tc, r rises quickly to the envelope of the 

curves; If r > 1 Initially, this calculation gives a lower llmlt on 

the remnant pyrgons. After decoupling, r Is constant In an 

lsentropic expansion. 

The calculation could be Improved technlcally by conslderlng 

pyrgon-antlpyrgon capture Into Coulomb bound states with large 

principle quantum numbers and subsequent annlhllatlon [12], or by 

conslderlng J-body initial states [13]. However, on the basis of the 

effect on monopole-antlmonopole annihilation, we do not expect the 

Improvements to change substantially the results In Fig. 1. 

-a- 

be near unlty, Independent of R. Thus, the model predicts primordlal 

pyrgons to be nearly as abundant as primordial photons. 

Although It Is not In the spirit of Kaluza-Klein theorles, one 

may make the nP LQG assumption that the pyrgons carry an additional 

charge that Is slmllar to LX, but not strongly dependent on Rpl/R. 

If we assume for this charge that LY is constant, then CA/v1 

= oS*R’/fi, and th e annlhilatlon rate Jncreases with R. 

The ratio r = n+/nr Is shown as a function of T/T, In Fig. 1 

Today (T IJ lo-l3 
Ti 

GeV, nrd400 cm -3) the energy density 

con trl buted by the photons Is Pr N nrTU ~10~~ fc, where 
fc Is 

the cl osure density, 10 -29 -3 
gem . Since the total energy 

density of the universe Is less than 2 pc c141. the present energy 

density of the p,P+ = mpn,,, = R-‘np, must satisfy 

f+i/pf .s 104, or 
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r = n+/np 6 lo4 TrR . (8) 

Using the results from Fig. 1, this Ilmlt Is satisfied only If R > 

(IO6 GeV)-’ at r $ lo- 
14 

. If the annlhllatlon cross sectlon Is 

changed, for Instance, by uslng a dlfferent value of d or by 

lncludlng more annlhll atlon channels, the bound scales as 

R > (smy? lo6 GeV)-‘. 

In summary, the above radlus Is much larger than the Planck 

radius. If the radius were Rpl and the expansion of the universe 

were Isentropic after 9 decoupling, the photon density would equa I 

the density of charged spin-2 pyrgons with masses of order mpl. 

Moreover, this catastrophic predlctlon follows from other models w 

stable pyrgons. 

Ith 

Two posslbllltles for circumventing this bound on R come to 

mind. The first way Is to relax the assumption that ng Is constant. 

If a large amount of entropy were created after compactlflcatlon, It 

would be possible to dilute the value of r to an acceptable level. 

However, the baryon asymmetry would be diluted by the same amount, so 

It Is reasonable to requlre the entropy generatlon at an epoch prlor 

to baryon number generatlon. This would seem to require 

compactlflcatlon at energy scales > 10 l4 GeV. Another possiblllty 

Is to relax the assumption that R Is constant during the entire 

Detweller cl51 have 

of the 5-dimensional 

evolution of the universe. Indeed, Chodos and 

dlscussed an interesting cosmological solution 

theory In which the extra dimension Is klarge” 

three spatia 

lcatlon, R + 

times, and 

subsequently shrinks as the other on5 grow. 

Perhaps, at the time of compactif 

now R has diminished to 
-1 

mPl * 

at earl Y 

I dlmens I 

(lo6 GeV 1 
-1 

, but 



Since the 5-dimenslonal model Is very schematlc, we now 

these resul ts can be generalized to more reallstlc theorles w 

extra dlmen slons. The answer to the crucial question “Are th 

stable pyrgons?” Is model dependent. There are many types of 

dlmenslonal theories: various versions of supergravity In 11 

dlmenslons; superstrings In 10 dimensions [16]; pure Elnsteln gravity 

In any number of dimensions, where one mlght use a non-standard 

action [17] or a non-standard ansatz for the vacuum [la]. In some 

mode I s there are “externa I** matter fields present to force the 
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ask If 

Ith 

ere 

hlgher 

compactlflcatlon, while In others, the 

presence of a cosmological constant. 

In 11-dimensional supergravlty WI 

compactlflcatlon Is due to the 

th vacuum M4 X S7, the 

zero modes and pyrgons are classlfled by hellcity and S08. We show 

that If the SO8 Is unbroken or broken In a specific way, there are 

stable pyrgons. This can be seen as follows: the representations of 

SO8 fall Into 4 nonoverlapplng classes that are congruent to the 1, 

8 v, 8,, or 8, C191. u zero modes are In the 1 and 8, 

congruency classes [20,21]. The zero modes of heliclty 2, 3/Z, 1, 

l/2, and 0, respectively, are In the 1, 8,, 2-8, x6,, and xv t 

+ 
where 1, LB, and all three E’s are In the 1 class, and B 

S 

and x4, are in the 8, class. Any tensor product of any number of 

representations In the 1 and 8, classes remains In the 1 and 8, 

classes; It Is Impossible to reach representations In the 8, or 

% 
classes In this way. Thus, by the generallzatlon of (51, if 

there are any pyrgons In 

stable. 

The pyrgon spectrum 

gravlton Induces a harmon 

he 8, or 8, c 

for S’ is eas 

c expanslon 0 

asses, then some must be 

I y computed. The 1 

mass elgenstates (1). with 
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the sum on k In (1) over all SOa representation contalnlng an SO7 

slnglet: 1, a,, xv, mv,..., or In terms of Dynkin labels, 

(OOOO), (1000). (2000). (3000) ,.... The (Zk+l,O,O,O) representations 

are all In the 8, class, but the (Zk,O,O,O) representations are In 

the 1 congruency class. (See Cl91 for a review.) The supermultlplet 

accompanying the (k000) term In the harmonic expansion for the 

gravlton Is a typical representation, which means that It is obtalned 

by multlplylng the zero mode representation by (k000). Now, the 

product of an B,-type representation with a representation In the 

1, f!,, 8,, or 8, class, respectively, Is in the 8,, 1. 8,, 

or 8, class. Thus, the pyrgons in the supermultiplets where the 

spin-2 member transforms as (Zk+l,O,O,O) are In the 8, and 8, 

classes. For example, the “flrstk excited modes with hellclty 2, 

3/Z, 1, l/2, 0, respectively, are 8,. 8, f xc, 8, + 56, + 

l%p 8, + 24, + lm, + a4 vc’ 8,+zd,+1611,+ 

=v + =-$v. 
If the SOa Is broken, but broken WI thou t collapsing the 

congruency-class dlstlnctlons, then there St1 II remain stable 

pyrgons. The most likely breaklng patterns correspond to the little 

groups of the splnless zero modes, 12, t xc [19]. There are 4 

little groups of the x’s: SU4 X U1 and SU2 X SU2 X SU2 X 

SU2’ which preserve all the congruency class distinctions; and 

SO7 and SO3 X S05, which collapse the distlnctlons. 

(Expllcltly, the 8, and 1 classes are collapsed to a 1 class, and 

the 8, and 8, classes are collapsed to a splnor class.) Thus, In 

the former case, some pyrgons remain stable, but In the latter case, 

which Includes the lrsquashed 7-sphere” with symmetry SO3 X SO. 
5’ 

we conclude that all pyrgons are probably unstable [22]. 
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In conclusion, lnterestlng higher-dimensional theories may have 

stable pyrgons with masses of order R 
-1 ; their cosmological 

impllcatlons can provlde an important constraint on model bulldlng. 

The crucial ingredients for computing their contribution to the 

energy density of the unlverse are the structure of the harmonic 

expans Ion, the Identlflcatlon of the zero models and conservation 

laws, and the R dependence of W 
A’ If there are stable pyrgons, 

then they become (yet further) candidates to dominate the dark matter 

of the universe. 
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FIG. 1: The ratlo r of the number density of the pyrgons nq to the 

photon number denslty nr as a function of T/T, for various values 

of the compactlflcatlon scale R; Cy= 1. 


